Stella Maris CCS

Stella Maris CCS

Who we are

Altera vision: Leading the industry to a sustainable future

- Decades of experience in shipping and offshore operations
- Industry leader and pioneer in harsh weather FPSOs
- Market segment developer of Dynamically Positioned Shuttle Tankers
- By 2026: Allocate the majority of new capital to new business ventures aligned to the energy transition, including CCS
- By 2030: Generate the majority of cashflow from such new ventures

Strong and Commited Sponsors

BROOKFIELD Corporation

- One of the world's largest alternative asset managers
- Long-term, value investors
- Owner-operator mentality
- Focused on Real Assets (Property, Infrastructure, Renewables & Private Equity)
- Commitment to reach net-zero emissions by 2050 or sooner across all assets under management

Private Equity Strategy

- Real assets expertise
- Invest on a value basis
- Operations-oriented approach
- Global scale
- Significant access to capital

Stella Maris – from terminal to storage

A single Stella Maris project will have the capacity to store 10 Mt CO₂/year

Capturing Technology	Transport CO₂ from emitter to CO₂ Terminal	Collection	Transportation	Injection of CO ₂	V
If required, in collaboration with emitters	In partnership with local stakeholders (pipeline, truck, rail, barge, etc.)	CO ₂ Terminal	LCO ₂ carriers	Direct Injection Unit	
	Emitter capture, liquify and store in own CO ₂ tanks Stella Marris can collect CO ₂ and transport to terminal or directly to injection location	Ť.	Ì	Offshore Storage Reservoir Havstjerne licence	

The Stella Maris CCS project

To get CCS costs down, large-scale flexible solutions are required

- One-stop-shop from collection to storage
- Large scale bringing cost down
- Flexible maritime solution
- Scalable worldwide design one build many
- Shared CO₂ infrastructure also for smaller emitters
- Solution deployed for large scale emitters, clusters and/or nation states in 2027

CO₂ Terminal (CO₂T)

Principal dimensions (80k cbm design):				
Length o.a.	220m			
Breath (M)	58m			
Depth (M)	24.5m			
Design Draft	13m			

Annual capacity up to 7 mt/unit

Designed for shore power

30 V.D

High- & lowpressure gas from pipelines

Medium & lowpressure liquid from road, ships or barges

Collection, Processing and Export

with different levels

Designed to receive and process:

LCO₂ Carriers

Key Innovations:

Dynamically positioned LCO₂ carrier Low pressure CO₂ tanks Equipment for offshore offloading of CO₂ Power Source for injection unit

New, state of the art LCO₂ carrier design

CO₂ stored and transported as liquid at 6,5 barg & -47°C

Battery hybrid installation

LNG/Biogas/NH3 as fuel

50,000 cbm - low pressure tanks

Zero emission capable

Principal dimensions:Length o.a.238mBreath (M)38mDepth (M)22mDesign Draft13m

Transport and DP offloading

Offshore offloading

- Continuous injection is ensured by always having one carrier at site
- 2nd carrier connects and takes over before the 1st one leaves
- A Submerged Turret Loading (STL) system is used with two independent STL buoys
- Electrical power cable in addition to the CO₂ offloading hose

Direct Injection Unit (DIU)

Offshore Injection and Storage

Principal dimensions:				
Hull diameter	50m			
Bilge Box diameter	62m			
Main Deck diameter	50m			
Hull depth	22m			
Design draft	-13m			
Draft loaded	14m			

Key Innovations: Power from LCO₂ Carrier Normally Unmanned Equipment for offshore loading of CO₂ Zero emission capable Remote operation from shore

Allows continuous injection Heating and injection modules below deck Power from LCO₂ carrier (+ battery back-up) Unmanned and operations from shore

CO₂ heated and injected into reservoir in dense phase (>5°C & 65–160 barg)

Direct Injection Unit (DIU)

Offshore Injection and Storage

Principal dimensions:

50m

Hull diameter

В

D

D

aft loaded	14m
esign draft	- 13m
ull depth	22m
ain Deck diameter	50m
lge Box diameter	62m

Key Innovations: Power from LCO₂ Carrier Normally Unmanned Equipment for offshore loading of CO₂ Zero emission capable Remote operation from shore

Allows continuous injection Heating and injection modules below deck Power from LCO₂ carrier (+ battery back-up) Unmanned and operations from shore CO₂ heated and injected into reservoir in dense phase (>5°C & 65–160 barg)

Direct Injection Unit (DIU)

Offshore Injection and Storage

Alternatives

Principal dimensions:		
Hull diameter	50m	
Bilge Box diameter	62m	
Main Deck diameter	50m	
Hull depth	22m	
Design draft	13m	
Draft loaded	14m	

Key Innovations: Power from LCO₂ Carrier Normally Unmanned Equipment for offshore loading of CO₂ Zero emission capable Remote operation from shore

Power from LCO₂ carrier (+ battery back-up)

Unmanned and operations from shore

 CO_2 heated and injected into reservoir in dense phase (>5°C & 65–160 barg)

Altera has been awarded a CO₂ exploration licence offshore Norway

The Havstjerne reservoir is planned to be in operation in 2027

- Licence awarded together with our partner Wintershall
 Dea
 - 40/60% ownership share
 - Wintershall Dea as operator of the licence
- Located south of the North Sea closer to the European market
- The reservoir is expected to have the capacity of receiving around 7 Mt CO₂/year and with total capacity of around 200 Mt CO₂
- Plan for first CO₂ injection in 2027

Barge concept

Movable storage

12,500 cbm or 6,250 cbm design

Can reduce the need of local infrastructure

altera

